

DISABILITY AND LABOUR MARKET
TRAJECTORIES:

A SEQUENCE ANALYSIS FROM BELGIUM

Esmeralda Gerritse Robert Plasman Ilan Tojerow

INTRODUCTION

- The proportion of working age population receiving work disability benefits has been rapidly increasing in many countries (Curnock et al., 2016)
- Few studies analysed the transitions on the labour market in specific countries (Øyeflaten et al., 2014; Wiberg et al., 2017)
- Our purpose is to analyse the dynamics on the labour market for the case of Belgium and to add a long-term perspective
- Profiling the individuals in each path in order to better target policies

DATABASE

Sample:

Random selection of around 10.000 individuals from the Belgian population in working age with at least one day in *incapacity to work* and who entered MIW between the years 2005 and 2009 children

Region :			
Brussels	647	6,7	
Wallonia	3.147	32,4	
Flanders	5.914	60,9	
Total	9.708	100	

Subsample

%

53,1

16,9

60,8

20.2

2,1

63,9

52,7

N

5.159

1.641

5.900

1.958

209

6.209

5.120

Female

16-29

30-49

50-59

In couple

60+

Age:

Followed for a period of 20 quarters, 2 years before, 3 years after

DATABASE Labour market states hierarchized :

Hierarchy	Subsample	
	N	%
1) <u>Exit</u> : Dead, Retired, Early-retirement	2.627	1,4
2) <u>Medical Incapacity to work</u> (MIW): Primary incapacity, invalidity, work accident, professional sickness, Handicap†	39.431	20,3
3) <u>Employment</u> : Independent worker, private sector, public sector, public administration	124.757	64,3
4) <u>Unemployment</u> : Exempted unemployed, Unemployed	23.744	12,2
5) Other inactivity: Carreer interruption and credit time, social revenue, employment for less than 30% FTE, no registered state, unknown	3.601	1,8

METHODS: SEQUENCE ANALYSIS

 Approach that provides a unitary perspective of the life-course by dealing with whole trajectories, allowing to account for all states of interest during the period considered (Abbott et Hrycak, 1990; Aassve et al., 2007; Studer and Ritschard, 2016)

Methodology: Optimal Matching Analysis (OMA) Generalized Hamming weighted sum of positionwise weighted sum of positionwise weighted sum of positionwise mismatches between two sequences, sensitive to timing differences

- Procedure :
 - Dissimilarity measure
- Disability and look in Ret trajectories method

METHODS: SEQUENCE ANALYSIS

- <u>Dissimilarity measure</u>: choice of substitution costs
 - Theory-based costs = costs determined based on the a priori knowledge of the field

	Employm. Unemploym		MIW	Other	Exit
Employment	0	2	2,5	2,5	3
Unemployment	2	0	1,5	1,5	3
MIW	2,5	1,5	0	1	3
Other	2,5	1,5	1	0	3
Exit	3	3	3	3	0

METHODS: SEQUENCE ANALYSIS

- Classification method : choice of clustering algorithm
 - Ward's algorithm based on hierarchical classification
- Number of clusters : choice of optimal number of clusters
 - Silhouette average width

Three main typologies of labour market trajectories identified :

- Employment Short term MIW Employment
- Employment Long term MIW
- Unemployment Short term MIW –Unemployment Medoid representation

Claratan	Percent	C:	Dispersion		Madaid assumes	
Cluster	total	Size	Mean	Max	Medoid sequence	
1	69%	6.659	5,5	32,2	EEEEEEEEEEEEEE	
2	18%	1.740	10,4	32,4	EEEEEEEIIIIIIIIII	
3	13%	1.309	8,2	20,6	cccccciiiiccccccc	

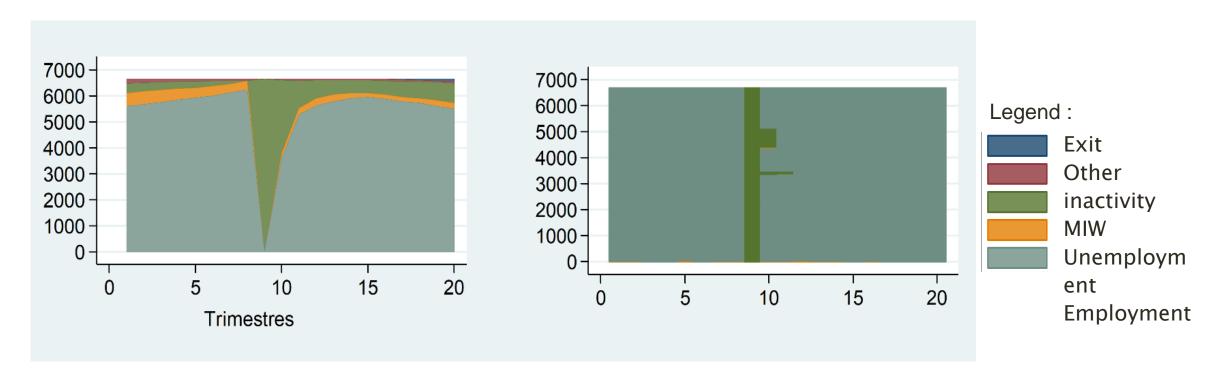
Legend:

E = Employment

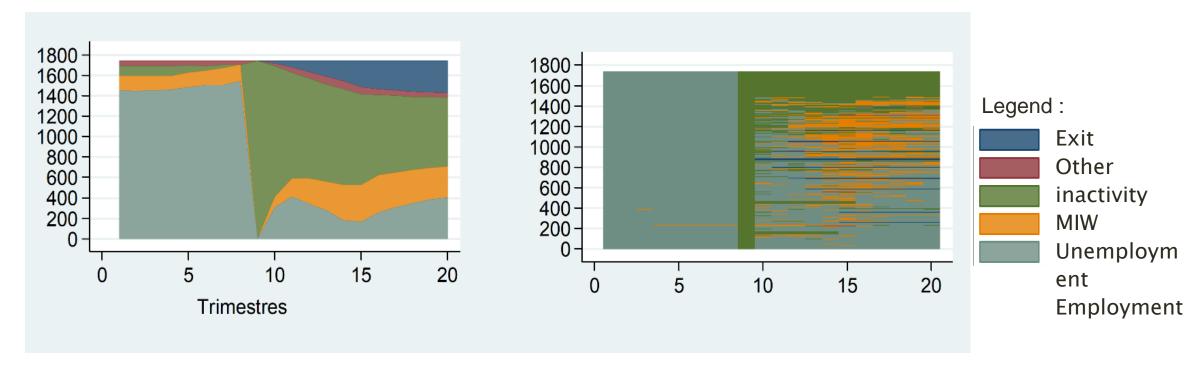
C = Unemployment

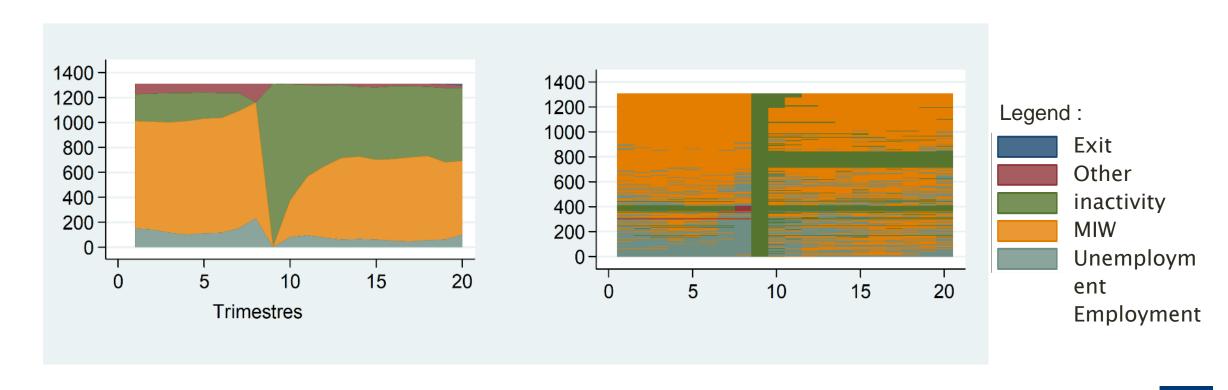
I = Medical incapacity to

work


A = Other inactivity

S = Exit


<u>Graphic representation</u>: *Employment - Short term MIW - Employment*



<u>Graphic representation</u>: *Employment - Long term MIW*

<u>Graphic representation</u>: Unemployment – Short term MIW – Unemployment

Analysis of the association with socio-demographic factors through a logistic model using odds ratios :

 $CLUSTER_k = \beta_1 SEXE + \beta_2 AGE + \beta_3 COUPLE + \beta_4 ENFANTS + \beta_5 REGION + \varepsilon$

	Return to employment			Permanence in MIW		Return to unemployment	
	OR	95% CI	OR	95% CI	OR	95% CI	
Female	0,61***	0,59 - 0,62	1,18***	1,16 - 1,21	1,95***	1,90 - 2,01	
Age:							
30-49	0,84***	0,82 - 0,87	1,13***	1,09 - 1,17	1,14***	1,10 - 1,19	
50-59	0,45***	0,44 - 0,47	2,11***	2,03 - 2,20	1,14***	1,39 - 1,52	
>= 60	0,13***	0,12 - 0,14	8,34***	7,78 - 8,95	1,00	0,89 - 1,12	
In couple	1,99***	1,94 - 2,04	1,03***	1,01 - 1,06	0,29***	0,28 - 0,30	
With children	1,02**	1,01 - 1,05	0,79***	0,77 - 0,81	1,23***	1,19 - 1,27	
Region :							
Wallonia	1,18***	1,13 - 1,23	0,83***	0,79 - 0,87	0,94**	0,90 - 0,99	
Flanders	2,11***	2,03 - 2,19	0,68***	0,65 - 0,72	0,42***	0,40 - 0,44	
Number of obs.	6.659		1.740		1.309		

 Reference category: man, age 16-29, without partner, without children, from the Brussels region

	Return to employment		
	OR	95% CI	
Female	0,61***	0,59 - 0,62	
Age:			
30-49	0,84***	0,82 - 0,87	
50-59	0,45***	0,44 - 0,47	
>= 60	0,13***	0,12 - 0,14	
In couple	1,99***	1,94 - 2,04	
With children	1,02**	1,01 - 1,05	
Region:			
Wallonia	1,18***	1,13 - 1,23	
Flanders	2,11***	2,03 - 2,19	
Number of obs.	6.659		

- Employment Short term MIW –Employment
- Higher probability to follow this path for
 - men
 - the 16–29 years old
 - individuals in couple
 - those living outside the region of Brussels

	Permanence in MIW		
	OR	95% CI	
Female	1,18***	1,16 - 1,21	
Age:			
30-49	1,13***	1,09 - 1,17	
50-59	2,11***	2,03 - 2,20	
>= 60	8,34***	7,78 - 8,95	
In couple	1,03***	1,01 - 1,06	
With children	0,79***	0,77 - 0,81	
Region:			
Wallonia	0,83***	0,79 - 0,87	
Flanders	0,68***	0,65 - 0,72	
Number of obs.	1.740		

- Employment Long term MIW
- Higher probability to follow this path for
 - women
 - the 60+ years old
 - individuals without children
 - those living in the region of Brussels

	Return to unemployment		
	OR	95% CI	
Female	1,95***	1,90 - 2,01	
Age:			
30-49	1,14***	1,10 - 1,19	
50-59	1,14***	1,39 - 1,52	
>= 60	1,00	0,89 - 1,12	
In couple	0,29***	0,28 - 0,30	
With children	1,23***	1,19 - 1,27	
Region :			
Wallonia	0,94**	0,90 - 0,99	
Flanders	0,42***	0,40 - 0,44	
Number of obs.	1.309		

- Unemploym. Short term MIW Unemploym.
- Higher probability to follow this path for
 - women
 - the 30-59 years old
 - individuals being single
 - individuals with children
 - those living in the region of Brussels

IN SYNTHESIS

Research question :

Which are the most frequent trajectories on the labour market for individuals having experiences a period in medical incapacity to work? Which are the influencing factors?

- Method : Sequence analysis and logistic regression
- Results: Three main trajectories
 - Employment Short term MIW Employment
 - Employment Long term MIW
 - Unemployment Short term MIW Unemployment

• Factors : sex, age, couple, children, region significant

CONCLUSIONS

- Majority of individuals experiences short-term spells, while only a small proportion become long-term disabled
- The individuals who remain in disability for more years rarely recover afterwards
- Professional programs aimed at helping the MIW individuals to (re)enter
 the labour market should focus on the most fragile categories identified

DISABILITY AND LABOUR MARKET TRAJECTORIES:

A SEQUENCE ANALYSIS FROM BELGIUM

Thank you for the attention

More info:

Esmeralda.gerritse@ulb.ac.be